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A b s t r a c t  

Four ha t  s t i f f e n e d  t i t a n i u m  panels w i t h  two 
d i f f e r e n t  s t i f f e n e r  c o n f i g u r a t i o n s  were f a b r i -  
ca ted  by superp las t ic  forming/wel d b raz ing  and 
t e s t e d  under a moderately heavy compressive 
load.  The panels had the same ove ra l l  dimen- 
s ions b u t  d i f f e r e d  i n  the shape o f  the h a t  
s t i f f e n e r  webs; th ree  panels had s t i f f e n e r s  
w i t h  f l a t  webs and the o ther  panel had s t i f f e n -  
e r s  with beaded webs. Ana lys is  i n d i c a t e d  t h a t  
the  l o c a l  b u c k l i n g  s t r a i n  o f  the  f l a t  s t i f f e n e r  
web was considerably lower than the general 
panel buck l  i ng  s t r a i n  or cap buckl  i ng  s t r a i n .  
The a n a l y s i s  a lso  showed t h a t  beading the webs 
o f  the ha t  s t i f f e n e r s  removed then as the c r i -  
t i c a l  element f o r  l oca l  buckl i ng and improved 
the b u c k l i n g  s t r a i n  o f  the panels. The analy- 
t i c a l  extensional  s t i f f n e s s  and f a i l u r e  loads 
compared very wel l  w i t h  experimental r e s u l t s .  

I n troduc ti on 

Recent advances i n  the s t a t e  o f  the a r t  o f  
s u p e r p l a s t i c  f o n i n g  (SPF) o f  c e r t a i n  
meta ls ' -7  have made it poss ib le  to f a b r i c a t e  
design shapes t h a t  depart  from past exper i -  
ence. W i t h  the SPF process the designer has 
cons iderab ly  more freedom to design mass e f f i -  
c i e n t  s t r u c t u r e s .  P a r t s  w i t h  i n t e r s e c t i n g  com- 
pound contour surfaces can be made t h a t  would 
be impossible t o  f a b r i c a t e  w i t h  more conven- 
t i o n a l  methods. 

The ha t  s t i f f e n e d  panel, shown i n  f i g u r e  
1, i s  a t y p i c a l  c o n s t r u c t i o n  f o r  a i r c r a f t  
s t r u c t u r e .  The superp las t ic  forming/weld braz- 
i n g  (SPF/WB) f a b r i c a t i o n  process has been 
ex l o r e d  f o r  t h i s  type o f  geometry i n  t i t a n i -  
u m ' ~ ~ .  The primary f u n c t i o n  o f  the m a t e r i a l  
i n  the webs o f  the ha t  s t i f f e n e r  i s  to support 
the l o a d  c a r r y i n g  caps. For t h i s  purpose the  
webs should be made as t h i n  as poss ib le  y e t  
have enough bending s t i f f n e s s  to prov ide  ade- 
quate support  f o r  the caps5. For a panel w i t h  
s t i f f e n e r  caps and webs f a b r i c a t e d  from a s in -  
g l e  sheet o f  mater ia l  * the requirement f o r  t h i n  
webs c o n f l i c t s  w i t h  the requirement f o r  a cap 
w i t h  h i g h  l o c a l  buck l ing  s t r a i n .  

Beads i n  the s t i f f e n e r  webs (see f i g u r e  2 )  
increase t h e i r  t ransverse bending s t i f f n e s s  t o  
p r o v i d e  more cap support and produce a web w i t h  
a h igh  l o c a l  buck l ing  s t r a i n .  Thus i f  the 
panel c o n f i g u r a t i o n s  were opt imized the beaded 
webs would a l low f o r  a deeper s t i f f e n e r  t h a t  
would increase the general panel buckl  i ng  
s t r a i n .  However, because o f  the f a b r i c a t i o n  
c o n s t r a i n t s  o f  t h i s  study (discussed bel  ow) 
such an o p t i m i z a t i o n  was no t  c a r r i e d  out.  The 
geometry shown o f f e r e d  a simple t e s t  specimen 
t h a t  cou ld  be formed by SPF/WB to, check out 
f a b r i c a t i o n  process d e t a i l s .  T i tan ium sheet 

m a t e r i a l  0.050 inch  t h i c k  was used because i t  
was r e a d i l y  a v a i l a b l e .  

For t h i s  study, two h a t - s t i f f e n e d  panel 
geometries were f a b r i c a t e d  us ing  the SPF/WB 
process. The only f a b r i c a t i o n  v a r i a b l e  ava i la -  
b l e  fo r  change was the  geometry o f  the s t i f f e -  
ner.  Three panels were f a b r i c a t e d  w i t h  f l a t  
webs and one panel was f a b r i c a t e d  w i t h  beaded 
webs. The two geometries used the same bas ic  
mold and s t a r t e d  w i t h  the  same nominal gage 
sheet m a t e r i a l .  The panel l e n g t h  was s u f f i -  
c i e n t l y  low to preclude general panel buckl- 
ing .  The purpose o f  t h i s  r e p o r t  i s  to present 
the  r e s u l t s  o f  the a n a l y t i c a l  and experimental 
i n v e s t i g a t i o n  o f  the e f f e c t  o f  beading the webs 
on the buck l ing  s t r a i n  f o r  h a t - s t i f f e n e d  pan- 
e l  s. 

A n a l y s i s  

The a n a l y t i c a l  l oca l  b u c k l i n g  s t r a i n  o f  
any f l a t  element depends on a boundary condi- 
t i o n  f a c t o r  times the square o f  the r a t i o  o f  
the  element th ickness  to width. I f  a l l  o f  the 
elements i n  the c ross-sec t ion  have a s i m i l a r  
boundary c o n d i t i o n  fac to r ,  then t h e i r  l oca l  
b u c k l i n g  s t r a i n s  can be ordered by comparing 
t h e i r  r a t i o  o f  th ickness to width. Using t h i s  
c r i t e r i a ,  the l o c a l  b u c k l i n g  s t r a i n  o f  the f l a t  
s t i f f e n e r  webs ( f i g u r e  1) i s  lower than the 
o ther  elements i n  the  c ross-sec t ion .  The s k i n  
under the caps has the n e x t  lowest  l o c a l  buckl-  
i ng  s t r a i n .  The caps have a l o c a l  b u c k l i n g  
s t r a i n  l ess  than the  double l a y e r  sk in  between 
s t i f f e n e r s  which has the h i g h e s t  l o c a l  buckl  i n g  
s t r a i n  o f  a l l  o f  the  elements. 

Beading provides a web w i t h  low exten- 
s iona l  s t i f f n e s s  and w i t h  e x t r a  t ransverse  
bending s t i f f n e s s  so tha t ,  based on the r a t i o  
o f  th ickness to width,  the sk in  under the 
s t i f f e n e r s  now has the lowest  l oca l  buck l ing  
s t r a i n  o f  the remaining elements. Thus beading 
the  s t i f f e n e r  webs w i l l  r a i s e  the s t r a i n  l eve l  
needed to cause l o c a l  b u c k l i n g  i n  the panel 
cross-sect ion.  However, the webs are no longer 
load c a r r y i n g  elements of the panel and the n e t  
e f f e c t  on the t o t a l  load  the panel cou ld  c a r r y  
must be considered. 

A PASCOO ana lys is  o f  a model o f  the con- 
vent iona l  ha t  s t i f f e n e d  panel c ross-sec t ion  
v e r i f i e d  the order  o f  the  l o c a l  b u c k l i n g  
s t r a i n s  among the elements given by the th i ck -  
ness t o  w id th  a n a l y s i s  and showed t h a t  they 
were a l l  below the c r i t i c a l  s t r a i n  f o r  a gene- 
r a l  panel b u c k l i n g  mode. The PASCO code uses 
co lnpat ib i l  i ty between elements o f  the cross- 
sec t ion  and does n o t  have t o  assume a boundary 
c o n d i t i o n  f a c t o r  f o r  the elements, thereby g iv -  
i n g  an accurate computed element b u c k l i n g  
s t r a i n .  However, the program cannot account 



f o r  l o s s  o f  panel s t i f f n e s s  when an element 
buckles, t h e r e f o r e  the code cannot be used t o  
f i n d  the  h igher  buck l ing  loads o r  the  maximum 
l o a d  f o r  the  panel. 

The panels a re  made from two sheets o f  
0.05 i n c h  mater ia l .  Regardless o f  reshaping by 
the  SPF process, the  c ross-sec t iona l  area, mass 
and extens ional  s t i f f n e s s  (EA) o f  the  panels 
have values equal t o  those o f  two sheets 0.05 
i n c h  t h i c k .  Using a nominal modulus o f  
17,000,000 p s i ,  the computed ex tens iona l  s t i f f -  
ness (EA) i s  54,000,000 lbs.  Using t h i s  value 
o f  cx te i i s i  cnal s t i f f  ness and the  coi.!,CteC 1 ocdl 
b u c k l i n g  s t r a i n s  f o r  the f l a t  webs, the  s t i f f e -  
ner  webs are c a l c u l a t e d  t o  buck le  a t  a panel 
l o a d  of 200,000 lbs.  To compute a maximum l o a d  
f o r  t h e  panel, t h e  s t i f f e n e r  webs and the s k i n  
under the  s t i f f e n e r s  are assumed t o  be buckled 
and t h e i r  e f f e c t i v e  widths are reduced t o  one 
h a l f .  Using t h i s  c r i t e r i a  f o r  the  reduced load 
c a r r y i n g  area and a y i e l d  s t r e s s  o f  133,800 
p:i, the  maximum load computed f o r  the  conven- 
t i o n a l  h a t  s t i f f e n e d  panel i s  340,000 l b s .  

A PASCO ana lys is  o f  the beaded h a t  s t i f f -  
ened panel shown i n  f i g u r e  2 i s  n o t  so s t r a i g h t  
forward as the conventional h a t - s t i f f e n e d  pan- 
e l .  The PASCO code i s  a l i n k e d  s t r i p  ana lys is  
and requ i res  t h a t  the geometry of  t h e  s t r i p s  be 
un i fo rm along the panel length.  Therefore, 
s t i f f n e s s  p r o p e r t i e s  o f  a un i fo rm s t r i p  equiva- 
l e n t  t o  the beaded webs had t o  be generated. 
To t h i s  end, t h e  beaded web geometry was analy-  
sed as a separate inodel on PASCO t o  determine 
the web o v e r a l l  bending and extens ional  s t i f f -  
nesses. Then us ing  the computed bending and 
extens ional  s t i f f n e s s e s  the geometry and modu- 
lii of an e q u i v a l e n t  element were determined5. 

Reading the  sides o f  the  s t i f f e n e r s  redu- 
ces the  computed EA by 11% t o  48,300,0001bs. 
Based on t h i s  a n a l y t i c a l  EA and the  computed 
l o c a l  b u c k l i n g  s t ra ins ,  t h e  s k i n  under the  
s t i f f e n e r s  i s  c a l c u l a t e d  t o  buck le a t  about 
212,500 l b s .  This  imp l ies  a 6% improvement i n  
the  lowest  l o c a l  buckle load over the  conven- 
t i o n a l  h a t  s t i f f e n e d  panel. Assuming the s k i n  
buck les under the  s t i f f e n e r  l e a v i n g  an e f f e c -  
t i v e  w i d t h  o f  one h a l f ,  the beaded h a t  s t i f f -  
ened panel i s  c a l c u l a t e d  t o  car ry  a maximum 
load a t  y i e l d  of 316,600 l b s .  This  i m p l i e s  a 
7% reduc t ion  i n  maximum load capac i ty  f o r  the 
beaded h a t  s t i f f e n e d  panel compared w i t h  t h e  
convent ional  h a t  s t i f f e n e d  panel. 

Panel F a b r i c a t i o n  

The panels were SPF Ti-6A1-4V a l l o y  m u l t i -  
s t i f f e n e r  sheets j o i n e d  t o  a Ti-6A1-4V a l l o y  
sk in .  The n u l t i - s t i f f e n e r s  were SPF from one 
0.05 i n c h  t h i c k  sheet i n  a s i n g l e  forming ope- 
r a t i o n .  P r i o r  t o  SPF, t h e  sheet was chemical ly  
cleaned, sprayed w i t h  a d i e  re lease compound 
and p laced between the cover  p l a t e  and mold as 
i n d i c a t e d  i n  f i g u r e  3. The mold assembly was 
p o s i t i o n e d  between res is tance heated ceramic 
p la tens  which were mounted i n  a h y d r a u l i c  
press. The mold assembly was heated t o  the 
forming temperature of 1700°F by means o f  the  
r e s i s t a n c e  heaters  i n  the  ceramic p la tens.  
A f t e r  heat ing,  a load was a p p l i e d  t o  the p l a -  
tens t o  e s t a b l i s h  a g a s - t i g h t  seal between the  
, t i t a n i u m  sheet mater ia l ,  the  upper cover  p l a t e ,  

and t h e  mold. Argon gas was then i n j e c t e d  
between the upper sur face of t h e  t i t a n i u m  sheet 
and the  cover p l a t e .  The argon gas pressure 
was then increased t o  approx imate ly  100 p s i  t o  
s u p e r p l a s t i c a l l y  form the  sheet. The app l ied  
l o a d  o f  the  h y d r a u l i c  press was increased t o  
r e a c t  the  forming pressure. A t  100 p s i  gas 
pressure, the forming t i m e  requ i red  t o  SPF a 
mu1 t i p l e  s t i f f e n e r  sheet was approx imate ly  60 
minutes. 

The c o n f i g u r a t i o n  o f  t h e  two male d i e  
i n s e r t s  f o r  the panels i s  shown i n  f i g u r e  4. 
The convent ional  h a t  s t i f f e n e r  d i e s  were 
machined from 17-4 s t a i n l e s s  s t e e l  bar  stock. 
The beaded h a t  s t i f f e n e d  d i e  i n s e r t s  were c a s t  
t o  shape us ing  17-4 s t a i n l e s s  s tee l .  The con- 
vent iona l  h a t  and beaded h a t  d ies  were i n t e r -  
changeable and fastened by screws t o  t h e  
r e t a i n e r  p l a t e .  

Fo l low ing  removal f rom the  mold and chemi- 
c a l  c leaning,  the  SPF m u l t i p l e  s t i f f e n e r  sheets 
were j o i n e d  t o  the  Ti-6A1-4V panel s k i n  sheets 
by two rows o f  e i g h t  spot welds between each 
s t i f f e n e r .  The spot  welds were s u f f i c i e n t  t o  
ma in ta in  a l ignment  and no a d d i t i o n a l  t o o l i n g  
was requi red.  S t r i p s  o f  0.016 inch  t h i c k  3003 
aluminum braze a l l o y  were p laced adjacent  t o  
the j o i n t s .  The assemblage was f i r s t  p laced i n  
a vacuum braz ing  furnace, heated t o  1250°F and 
h e l d  f o r  5 minutes t o  complete the  braz ing,  and 
f i n a l l y  furnace cooled. A t  the  braz ing  temper- 
a ture,  the mol ten braze a l l o y  was drawn i n t o  
the  f a y i n g  sur faces o f  the  j o i n t s  by c a p i l l a r y  
ac t ion .  

Tes t  Procedure 

The panel ends were p o t t e d  and machined 
f l a t  and p a r a l l e l  t o  each o ther .  A machined 
s t e e l  bar  was p laced between each end o f  the 
panel and faces o f  the  t e s t  machine p la tens.  
Fee ler  gage measurements were used t o  f i t  shims 
between the s t e e l  bars and the  p la tens  t o  
ensure bending- f ree contac t  w i t h  the  panels. 
2 e s t i n g  aga ins t  the s t e e l  bars, the f l a t  panel 
ends o f f e r e d  considerable r e s t r a i n t  aga ins t  
panel end r o t a t i o n .  The panel edges were moun- 
t e d  i n  k n i f e  edge supports t o  s imulate s imply  
supported edges. 

The specimens were loaded t o  f a i l u r e  i n  
compression between the displacement c o n t r o l  l e d  
p la tens  o f  a one m i l l i o n  pound t e s t  machine a t  
the  r a t e  of 60,000 pounds per  minute. The pan- 
e l s  were inst rumented w i t h  e l e c t r i c a l  r e s i s -  
tance s t r a i n  gages. P l a t e n  displacements were 
moni tored w i t h  1 i near vo l  tage displacement 
t ransducers (LVDT). The load, s t r a i n  gage 
responses and d i  sp l  acements were inoni t o r e d  by a 
data a c q u i s i t i o n  system t h a t  recorded the  data 
on a d i g i t a l  computer tape. 

Three o f  the  f a i l e d  panels (panels  desig- 
na ted  2, 3 and 4 i n  Table 1)  were c u t  up t o  
make m a t e r i a l  coupon t e s t  specimens. The COU- 
pon specimens were marked w i t h  un i fo rm l i n e s  
across the  t e s t  s e c t i o n  and inst rumented w i t h  
e l e c t r i c  r e s i s t a n c e  s t r a i n  gages. The coupons 
were p u l l e d  t o  f r a c t u r e  i n  a t e n s i l e  t e s t  
machine. Un i fo rm e longat ions  were measured from 
marked gage l i n e s  over  a 1 i n c h  s e c t i o n  of the  
specimen away from the f r a c t u r e  zone. Elonga- 
t i o n s  across the  f r a c t u r e  were measured f rom 
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marked gage l i n e s  over  a 2 i n c h  sec t ion  across 
t h e  f r a c t u r e  zone a f t e r  t h e  specimen had been 
p u t  back together .  

Resu l ts  and Discuss ions 

T e n s i l e  p r o p e r t y  data from t h e  coupon 
t e s t s  a re  g iven i n  t a b l e s  2, 3 and 4. The 
average modulus was 17.000 k s i  and the  average 
m a t e r i a l  y i e l d  s t r e s s  was 133,800 p s i .  Compar- 
i n g  the  average coupon data obta ined f rom t h e  
cap and s k i n  areas, i n d i c a t e  t h a t  t h e  f a b r i c a -  
t i o n  process had l i t t l e  o r  no e f f e c t  on t h e  
bas ic  m a t e r i a l  p roper t ies .  

Conventional Hat  S t i f f e n e d  Panels 

Local t h i n n i n g  o f  the  cross s e c t i o n  by 
t h e  SPF process n u s t  be taken i n t o  account t o  
p r o p e r l y  i n t e r p r e t  the  experimental r e s u l t s .  
The t i t a n i u m  sheet p r i o r  t o  forming r e s t s  on 
top o f  t h e  male d i e  i n s e r t  i n  the  mold c a v i t y .  
The SPF fo rming  pressure s t re tches  the sheet 
over  the  male d i e  i n s e r t .  The sheet m a t e r i a l  
l y i n g  on top o f  the  d i e  i n s e r t  undergoes very 
1 i t t l e  s t r e t c h i n g  and becomes the  s t i f f e n e r  
cap. As the  sheet s u p e r p l a s t i c a l l y  forms i n t o  
the  mold, i t  s t r e t c h e s  and makes contac t  w i t h  
the  s ides o f  the  d i e  i n s e r t  and forms the  webs 
o f  the  s t i f f e n e r s .  As the  sheet p rogress ive ly  
forms i n t o  the  mold, the  s t r e t c h i n g  causes t h e  
s t i f f e n e r  webs t o  be p r o g r e s s i v e l y  t h i n n e r  
toward t h e  bot tom o f  the  mold c a v i t y .  The 
r e s u l t i n g  s t i f f e n e r  c ross-sec t ion  has a cap 
w i t h  a th ickness  near ly  equal t o  t h e  o r i g i n a l  
sheet th ickness  and webs w i t h  a t a p e r i n g  t h i c k -  
ness (see f i g u r e  5). 

As t h e  t i t a n i u m  sheet forms i n t o  the  mold 
c a v i t y ,  a t  the  ends o f  t h e  d i e  i n s e r t ,  i t  n o t  
o n l y  s t re tches  t ransverse t o  the s t i f f e n e r  as 
i t  contac ts  the  s ides  o f  t h e  d i e  i n s e r t ,  b u t  i t  
a l s o  s t r e t c h e s  a long the  s t i f f e n e r  as i t  con- 
t a c t s  the  s ide  o f  the  mold between the dies. 
T h i s  b i - d i r e c t i o n a l  s t r e t c h i n g  causes grea ter  
t h i n n i n g  t o  occur  i n  the  sheet near the bottom 
o f  the mold. As a r e s u l t  there  i s  more t h i n -  
n i n g  o f  the  s t i f f e n e r  webs and o f  t h e  s k i n  sec- 
t i o n  between s t i f f e n e r s  near the  panel ends 
than i n  the  middle o f  the panel. 

T h i s  a d d i t i o n a l  t h i n n i n g  causes t h e  
p o s i t i o n  o f  the  n e u t r a l  sur face o f  the panel 
t o  vary a long t h e  panel leng th .  I t s  p o s i t i o n  
i s  c l o s e r  t o  the  s k i n  near the ends than i n  t h e  
middle o f  the  panel. Th is  v a r i a t i o n  i n  pos i -  
t i o n  o f  the  n e u t r a l  sur face produces an o f f s e t  
l o a d  pa th  f o r  the  a x i a l  l o a d  t h a t  causes t h e  
panel t o  bend. T h i s  c o u l d  be prevented by c u t -  
t i n g  o f f  more o f  the  ends o f  the panels. The 
o f f s e t  l o a d  pa th  exp la ins  why the  s t r a i n  gage 
response data f o r  the convent ional  s t i f f e n e d  
panels  showed t h a t  t h e  panel s were bending f rom 
t h e  onset o f  loqding,  wi th the  s k i n  s ide  bowing 
inward (see f i g u r e  6) .  

The exper imenta l  ex tens iona l  s t i f f n e s s  
values (from l o a d  displacement p l o t s  such as i n  
f i g u r e  7) f o r  the  convent ional  h a t  s t i f f e n e d  
panels  averagedout  t o  51,400,000 lbs(see t a b l e  
1) .  T h i s  va lue i s  5% lower  than the computed 
ex tens iona l  s t i f f n e s s  value. Since coupon t e s t s  
determined t h a t  the  mater ia l  modulus was c l o s e  

t o  the  nominal va lue used f o r  the  computations, 
t h e  s l i g h t l y  lower  than expected va lue o f  EA i s  
a t t r i b u t e d  t o  the grea ter  t h i n n i n g  near t h e  
panel ends. 

The s t i f f e n e r  caps i n  a l l  t h r e e  conven- 
t i o n a l  h a t  s t i f f e n e d  panels  buck led near the  
p o t t e d  ends. Because t h e  p o t t e d  ends o f  t h e  
panel p revent  r o t a t i o n  as the  panel begins t o  
bend, the  s t i f f e n e r  caps near the ends were 
sub jec ted  t o  an a d d i t i o n a l  compressive compon- 
en t  due t o  the  end moment r e q u i r e d  t o  p revent  
r o t a t i o n .  Thus these cap buck les were caused 
by increased compression s t r a i n s  combined w i t h  
t h i n n e r  webs near the  ends. Conventional h a t  
s t i f f e n e d  panels 1 and 2 had no s t r a i n  gages 
l o c a t e d  near the panel ends. However, several 
gages were p laced on the  s t i f f e n e r  caps 1.5 
i n c h  above the  p o t t i n g  m a t e r i a l  on panel 3. 
The response curves from these s t r a i n  gages, 
f o r  two d i f f e r e n t  s t i f f e n e r s ,  a re  shown i n  f i g -  
u re  8. One gage was near ly  centered on a l o c a l  
cap buck le and the  o t h e r  was j u s t  ou ts ide  the  
l o c a l  cap buckle. These s t r a i n  gages showed 
t h a t  s t r a i n  reversa l  occurred near the  panel 
ends be fore  any reversa l  occurred near the  mid- 
d l e  o f  the panel (compare f i g u r e s  8 and 9) .  
The lowest  s t r a i n  reversa l  i n  panel 3 occurred 
i n  the  caps a t  the panel ends a t  a l o a d  o f  
193,000 l b s .  This  i s  s l i g h t l y  lower  than the  
200,000 lb .  computed panel l o a d  based on l o c a l  
b u c k l i n g  s t r a i n  i n  the  s t i f f e n e r  webs. The 
b u c k l i n g  analys is ,  however, d i d  n o t  i n c l u d e  any 
o f  the bending e f f e c t s  t h a t  appeared i n  t h e  
experimental b u c k l i n g  r e s u l t s .  I t  can on ly  be 
be assuined t h a t  panels 1 and 2 a l s o  had revers-  
a l s  a t  lower loads near t h e  panel ends as found 
i n  panel 3. Since panel 3 was t h e  on ly  conven- 
t i o n a l  h a t  s t i f f e n e d  panel w i t h  gages a t  the 
panel ends, f o r  comparative purposes, the  i n i -  
t i a l  s t r a i n  reversa l  data shown i n  Table 1 are 
from gages loca ted  near t h e  panel midsections. 
The average o f  these loads i s  19% h igher  than 
the  computed l o c a l  b u c k l i n g  l o a d  based on the  
a n a l y t i c a l  buck l ing  s t r a i n  i n  the  s t i f f e n e r  
webs. 

Local buckles i n  t h e  caps near t h e  ends o f  
t h e  panels increase the  bending moment a t  the 
panel midsect ion because o f  t h e  a d d i t i o n a l  
s h i f t  i n  the l o c a t i o n  o f  the n e u t r a l  surface. 
A t  the midsect ion the  bending s t r a i n s  were 
reversed from those a t  the  panel ends. S t r a i n  
gage response data showed t h a t  the compressive 
bending s t r a i n s  combined w i t h  the a x i a l  com- 
p r e s s i v e  s t r a i n  t o  cause a h i g h e r  s t r a i n  i n  the  
panel s k i n  than i n  the  caps. As can be seen by 
t h e  s t r a i n  gage response curves shown i n  f i g u r e  
10, t h e  s k i n  i n  the  panel midsect ion buckles 
be fore  the caps. 

A t  f a i l u r e ,  a c a t a s t r o p h i c  c o l l a p s e  
occurred t h a t  produced permanent buck les i n  the  
caps and webs near t h e  panel ends and i n  t h e  
s k i n  a t  the panel midsect ions (see f i g u r e s  11 
and 12). None o f  t h e  we ld  braze j o i n t s  i n  t h e  
panels f a i l e d  d u r i n g  the  t e s t .  The correspond- 
i n g  maximum o r  c o l l a p s e  loads recorded f rom the  
panel t e s t s  a re  shown i n  Table 1. The 296,870 
l b  average f o r  these loads agrees w i t h i n  131, o f  
t h e  computed 340,000 l b  maximum load. 
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- 
Beaded Hat  S t i f f e n e d  Panel Conclusions 

The n e u t r a l  ax is  l o c a t i o n  f o r  the beaded 
h a t  s t i f f e n e d  panel does no t  depend on t h e  
beaded s t i f f e n e r  webs because t h e  webs are  no t  
l o a d  car ry ing .  Thus grea ter  t h i n n i n g  o f  the  
beaded webs near the panel ends has l i t t l e  
e f f e c t  on the  l o c a t i o n  o f  the  n e u t r a l  sur face  
panels. Hence the beaded h a t  s t i f f e n e d  panel 
has l e s s  bending than t h e  convent ional  h a t  
s t i f f e n e d  panel. T h i s  exp la ins  s t r a i n  gage 
response data from t h e  beaded h a t  s t i f f e n e d  
panels  showing nuch l e s s  bending i n  the panel 
w i t h  l o a d i n g  compared t o  the  convent ional  h a t  
s t i f f e n e d  panels  (see f i g u r e  13). 

The experimental r e s u l t s  from LVDT data 
show t h a t  the beaded h a t  s t i f f e n e d  panel EA 
s t i f f n e s s  (Table 1) was 11% lower than the  EA 
f o r  the  conventional h a t  s t i f f e n e d  panel. Th is  
compares very wel l  w i t h  the 11% reduct ion  
expected based on the computed EA values f o r  
t h e  two types o f  panels. 

The experimental EA va lue f o r  the beaded 
h a t  s t i f f e n e d  panel was 5% lower  than the com- 
puted value. Since t h e  nominal modulus va lue 
used i n  the  computations was c lose  t o  the expe- 
r imenta l  va lue obta ined from coupon tes ts ,  the 
s l i g h t l y  lower panel EA s t i f f n e s s  value froin 
t e s t  i s  a t t r i b u t e d  t o  i w r e  t h i n n i n g  o f  the 
sheet m a t e r i a l  between s t i f f e n e r s  near the ends 
due t o  b i - d i r e c t i o n a l  s t r e t c h i n g .  

Since the bending o c c u r r i n g  near the ends 
o f  the beaded ha t  s t i f f e n e d  panel was s l i g h t  
based on s t r a i n  gage response data (see f i g u r e  
141, the caps near the  ends d i d  no t  buck le 
e a r l y  as was observed i n  the  convent ional  h a t  
s t i f f e n e d  panels. As the  panel s t r a i n  l e v e l  
approached mater ia l  y i e l d ,  the s k i n  under the 
s t i f f e n e r s  a t  the panel midsect ion began t o  
buck le  (see f i g u r e  13) causing the panel s k i n  
s ide  t o  bow inward. Th is  induced l o c a l  buck les 
i n  the s k i n  which began t o  occur a t  a l o a d  o f  
268,500 l b s .  The experimental l o c a l  b u c k l i n g  
l o a d  f o r  the  beaded h a t  s t i f f e n e d  panel was 13% 
h i g h e r  than the  corresponding l o a d  f o r  the con- 
vent iona l  h a t  s t i f f e n e d  panel. Th is  i s  more o f  
an increase i n  buck l ing  s t r a i n  between the two 
types o f  panels than was expected, based on 
computations f o r  beading the  sides. However, 
most o f  t h i s  a d d i t i o n a l  improvement i s  
a t t r i b u t e d  t o  less  bending i n  the beaded h a t  
s t i f f e n e d  panel compared t o  the  convent ional  
h a t  s t i f f e n e d  panel. 

The l o c a l  buckles i n  t h e  panel s k i n  
r e s u l t e d  i n  a pronounced inward bowing o f  the 
panel s k i n  and a subsequent c a t a s t r o p h i c  c o l -  
lapse o f  the  beaded h a t  s t i f f e n e d  panel across 
the  midsect ion.  The r e s u l t i n g  c o l l a p s e  a t  
280,000 l b s  (see t a b l e  1) caused f r a c t u r e s  t o  
occur a t  the midsect ion and produced deep buck- 
l e s  w i t h  f r a c t u r e s  near the  panel ends (see 
f i g u r e s  15 and 16). There were no separat ions 
i n  the  weld brazed j o i n t s  observed i n  the 
tes t .  The f a i l u r e  l o a d  was 11% below the com- 
pu ted  maximum load. The maximum l o a d  f o r  the 
beaded h a t  s t i f f e n e d  panel was 6% below the  
average f a i l u r e  load f o r  the convent ional  ha t  
s t i f f e n e d  panel which agrees w e l l  w i t h  the 7% 
computed reduct ion.  

Four t i t a n i u m  m u l t i - s t i f f e n e r  panels were 
s u c c e s s f u l l y  f a b r i c a t e d  u s i n g  t h e  SPF/WB 
technique. Three panels had convent ional  h a t  
s t i f f e n e r s  ( f l a t  webs) and one panel had h a t  
s t i f f e n e r s  w i t h  beaded webs. The panels were 
t e s t e d  t o  f a i l u r e  i n  a x i a l  compression. None 
o f  the  weld braze j o i n t s  i n  t h e  panels f a i l e d  
o r  separated dur ing  the  t e s t s .  

Analyses were made f o r  bo th  types o f  
panels. Accord ing t o  ana lys is ,  the  l o c a l  
b u c k l i n g  s t r a i n  o f  the  f l a t  webs i s  lower  than 
t h e  b u c k l i n g  s t r a i n  o f  the o t h e r  elements i n  
the  cross sect ion.  Ana lys is  showed t h a t  
beading the  webs o f  the h a t  s t i f f e n e r s  r a i s e d  
the  b u c k l i n g  s t r a i n  o f  t h e  panel by 6%. However 
i t  a l s o  removed 11% o f  the  l o a d  c a r r y i n g  
m a t e r i a l  f rom the  cross sec t ion .  T h i s  
r e d u c t i o n  i n  extens ional  s t i f f n e s s  reduced the 
computed maximum l o a d  by 7%. 

Tes t  r e s u l t s  f o r  the  convent ional  h a t  
s t i f f e n e d  panels showed bending occurred i n  the  
panels under an a x i a l  load. The bending i s  
a t t r i b u t e d  t o  v a r i a t i o n  i n  the p o s i t i o n  o f  the 
non-uniform n e u t r a l  sur face,  caused by 
d i f f e r e n t i a l  t h i n n i n g  o f  m a t e r i a l  a long the  
panel length.  Th is  c o u l d  be prevented by 
c u t t i n g  o f f  more o f  the  ends o f  the  panels. A t  
the  panel ends t h i s  bending combined w i t h  the  
a x i a l  load  causing a h i g h e r  s t r a i n  i n  the 
s t i f f e n e r  caps than i n  the  sk in .  Thus the  caps 
o f  t h e  convent ional  h a t  s t i f f e n e r s  buck le 
l o c a l l y  near the  ends o f  the  panels. The 
l o c a t i o n  o f  the n e u t r a l  sur face  a long the  
l e n g t h  o f  the beaded h a t  s t i f f e n e d  panel i s  n o t  
a f f e c t e d  as much by SPF t h i n n i n g  as the 
convent ional  h a t  s t i f f e n e d  panel. Hence t h e  
exper imenta l  r e s u l t s  f o r  t h e  beaded h a t  
s t i f f e n e d  panel showed very l i t t l e  bending. 
Consequently the  beaded h a t  s t i f f e n e d  panel d i d  
n o t  buck le  near the  ends as d i d  t h e  
convent ional  h a t  s t i f f e n e d  panels. 

The experimental ex tens iona l  s t i f f n e s s  (EA 
o r  r a t i o  o f  load  t o  s t r a i n )  values were on ly  5% 
lovJer than c a l c u l a t e d  presumably due t o  more 
t h i n n i n g  i n  the  s t i f f e n e r  sheets near the  ends 
o f  the  s t i f f e n e r s .  Both the computed and the 
exper imenta l  r e s u l t s  f o r  the  beaded h a t  s t i f f -  
ened panel showed a 11% reduct ion  i n  the EA 
s t i f f n e s s  value compared t o  the convent ional  
h a t  s t i f f e n e d  panel. 

The b u c k l i n g  loads f rom the t e s t s  showed the  
beaded h a t  s t i f f e n e d  panel had an increase o f  
13% i n  l o c a l  b u c k l i n g  l o a d  over  the  conven- 
t i o n a l  h a t  s t i f f e n e d  panel. T h i s  i s  h igher  than 
t h e  6% c a l c u l a t e d  inc rease f o r  the  beaded h a t  
s t i f f e n e d  panel b u c k l i n g  l o a d  and i s  a t t r i b u t e d  
t o  a combination o f  decreased bending as w e l l  
as t o  beading o f  t h e  s t i f f e n e r  s ides.  The 
bending observed i n  the  exper imenta l  r e s u l t s  
was n o t  inc luded i n  t h e  ana lys is .  Maximum 
loads  f o r  the  panels were governed by y i e l d  and 
d i f f e r e d  on ly  s l i g h t l y  between the beaded and 
convent ional  h a t  s t i f f e n e d  panels. Experimen- 
t a l  maximum load f o r  the  beaded panel was 6% 
lower  than the  average o f  the  convent ional  
panel maximum loads compared t o  a computed 7% 
reduc t ion .  
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Table 4. Material prDperty coupon test results for panel #4. 

panel 

Table 1. Experlmntal and analytical results 

Extensional Cornpuled Reversal Maximum Computed 
stiffness, EA e?ensioMl Weight i d  load m x  

Ibs Ibs stiffness, EA Ibs Ibs 
Ibs X lo6 Ibs 106 

- 
.cation- 
specimen 

1-1 
1-2 
1-3 

Avg 1 
2-1 
2 -2 
2 -3 

Avg 2 
3-1 
3 -2 
3-3 

Avg 3 

- 

- 

1 
2 
3 

- 
Area 

in2 

53.3 54.1 10.96 219.764 u)4,130 340,ooO 
54.6 54.1 NA* 273,660 319,134 340,ooO 
46.2 54.1 10.71 217,000 267,360 340,ooO 

- 
Max 
load 

Ibs 

6Mo 
6620 
65M 
647 3 
3590 
36M) 
3560 
3583 
3950 
4055 
4090 
4032 

- 

- 

Yield Ultimate 
stress stress 

Kpsi Kpsi 

131.9 139.6 
133.0 141.1 
133.6 141.3 
132.8 140.7 
133.0 141.9 
132.4 142.3 
134.8 142.4 
133.4 142.2 
134.8 142.6 
134.5 142.8 
133.5 142.0 t 134.3 142.5 

modulus elongation across fraduri 
(1 Inch) I2 Inch) 

17.3 11 11.5 
17.3 6.5 
17.3 7.7 10 
19.0 10 
18.8 0 

. M51 
,0468 
.o060 
.Mho 
. m 3  . m3 . mo 
. m2 . m7 . m84 . mas 
,0283 - 

16.7 8 9.5 :::; I 78.3 I i . 5  
Nd available 

Location of specimens 
cut from panel a 1 3  

1.12 
--I b 3 . 5 3  -4 

10 
ty coupon 

Yield 
stress 

- 

KpSi 

Table 2. Material ora I test results for panel #2, conventional hat. 

135.3 
138.8 
137.0 
127.9 
1265 
127.2 
143.0 
145.6 
144.3 

2 

- 
z -Location d specimens 1 1 .  

cut from panel 

1 3  

T 

wide I 
9 stiffeners 20.98 

k 3 1 . 8 0 4  
t t  

Fig. 1 Geometric d e t a i l s  o f  convent ional  h a t  
s t i f f e n e d  panels (dimensions a r e  i n  inches).  

Table 3. Material property coupon test results for panel #3. conventional hat. J I  r 180° - 
Area 

in2 

. MM 

.M32 . 0636 
,0633 
.W46 . Q2M 
.m24 . Q234 . Q246 . U241 . w4 . Q239 

- 

- 

I E 
modulus 

psi x 106 

16.5 
16.7 
16.8 
16.7 
17.4 
17.9 
18.0 
17.7 
16.6 
1 6  6 
16.8 
16. 7 

Location- 
speclmen I 

b.54 

f 

k- 31.80 4 Section AA 

6090 13'2.0 141.6 
130.7 140.0 

6100 130.7 139.9 
131.1 140.5 
1268 133.9 

32260 130.4 140.5 

b 

A 4  1 

2 -2 
2-3 

Avg 2 

3-2 
3-3 

Avg 3 

7.3 10.3 
3 3 
5 I 1:5 I 
8 3150 130.8 140.6 

E I ::::: I E:: I b 

5.3 7.5 

6 

:.7 I thl J 
Location d speclmens 

cut from panel a 1 3  
Fig .  2 Geometric d e t a i l s  o f  the  beaded h a t  

s t i f f e n e d  panel (dimensions are  i n  inches).  
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A- Argon gas inlet 

Fig. 3 Schematic o f  t o o l i n g  f o r  superp last ic  
forming o f  the ha t  s t i f f e n e r s .  

1 Stiffener die Stiffener die 

Retainer plate Retainer plate 1 
(a) conventional hat 

stiffened panel stiffened panel 
configuration configuration 

(b) beaded hat 

Fig. 4 Configurations o f  d i e  i nse r t s .  

Fig. 5 Photograph o f  a sec t i on  through the  
conventional ha t  s t i f f e n e d  panel showing 
e f f e c t  o f  SPF th inn ing  on the thickness. 

3oo r Stiffener 

Load, 
Klbs 

200 

100 

0 .002 .004 .006 .m 
Strain 

Fig. 6 Midsection back-to-back s t r a i n  gage 
resDonse curves f o r  t he  conventional 

300 

200 

Load, 
Klbs 

100 

0 

Fig. 7 

hat '  s t i f f e n e d  Panel 3. 

load, 
Klbs 

.E .10 .15 
Deflection, in. 

Typica l  load-def lect ion response curve 
from LVDT placed between t e s t  machine 
p la tens (from Panel 3). 

0 .002 .OM ,006 .008 
Strain 

Fig. 8 Typica l  s t r a i n  gage response curves from 
two s t i f f e n e r  caps near the  end o f  t he  
conventional h a t  s t i f f e n e d  Panel 3. 
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300 r 
OF 

Stiffener Stiffener 

Load, 
Klbs 

Strain 
Fig. 9 S t r a i n  gage response curves from a 

s t i f f e n e r  a t  t he  middle o f  a conventional 
h a t  s t i f f e n e d  panel. 
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Fig. 10 Midsection s t r a i n  gage response curves 
from back-to-back gages t h a t  show s k i n  
s t r a i n  reversal occurr ing before the 
cap s t r a i n  reversa l .  

Flg. 11 Conventional hat  s t i f f e n e d  panel showing 
s t i f f e n e r s  a f t e r  collapse. 

Fig. 12 Conventional h a t  s t i f f e n e d  panel showing 
buckles across s k i n  s ide  a f t e r  col lapse. 
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100 
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Fig. 13 Typica l  back-to-back s t r a i n  gage response 
curves from midsection o f  beaded h a t  
s t i f f e n e d  panel. 

300 r 

Load, 
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Strain 

Flg. 14 Typica l  s t r a i n  gage response curves from 
caps of beaded ha t  s t i f f e n e r s  near the 
ends o f  t he  panel. 
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Fig. 15 Beaded ha t  s t i f f e n e d  panel showing 
damaged s t i f f e n e r s  a f t e r  col lapse. 

Fig. 16 Beaded h a t  s t i f f e n e d  panel showing 
s k i n  s ide  a f t e r  col lapse. 
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